Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

نویسندگان

  • Xing Huang
  • Marc-Georg Willinger
  • Hua Fan
  • Zai-lai Xie
  • Lei Wang
  • Achim Klein-Hoffmann
  • Frank Girgsdies
  • Chun-Sing Lee
  • Xiang-Min Meng
چکیده

Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucial role in determining the crystalline phase of ZnS. Through a systematic structural analysis, the ZnO core and the ZnS shell are found to have an orientation relationship of (0002)ZnO(WZ)//(002)ZnS(ZB) and [01-10]ZnO(WZ)//[2-20]ZnS(ZB). Observation of the coaxial nanocables in cross-section reveals the formation of voids between the ZnO core and the ZnS shell during the coating process, which is probably associated with the nanoscale Kirkendall effect known to result in porosity. Furthermore, by immersing the ZnO/ZnS nanocable heterojunctions in an acetic acid solution to etch away the inner ZnO cores, single crystalline ZnS nanotubes orientated along the [001] direction of the ZB structure were also achieved for the first time. Finally, optical properties of the hollow ZnS tubes were investigated and discussed in detail. We believe that our study could provide some insights into the controlled fabrication of one dimensional (1D) semiconductors with desired morphology, structure and composition at the nanoscale, and the synthesized WZ ZnO/ZB ZnS nanocables as well as ZB ZnS nanotubes could be ideal candidates for the study of optoelectronics based on II-VI semiconductors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A size-dependent structural evolution of ZnS nanoparticles

Recently, ZnS quantum dots have attracted a lot of attention since they can be a suitable alternative for cadmium-based quantum dots, which are known to be highly carcinogenic for living systems. However, the structural stability of nanocrystalline ZnS seems to be a challenging issue since ZnS nanoparticles have the potential to undergo uncontrolled structural change at room temperature. Using ...

متن کامل

Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite

Bulk crystals of ZnS usually take the zinc blende structure. However, the vapor deposited one-dimensional ZnS nanostructures normally take the metastable wurtzite structure. This Letter investigates the conditions under which the formed phase can be controlled between zinc blende and wurtzite in nanomaterials synthesis. The formation of pure zinc blende structured ZnS nanobelts is related not o...

متن کامل

Heterogeneous ZnS hollow urchin-like hierarchical nanostructures and their structure-enhanced photocatalytic properties.

Hexagonal wurtzite ZnS nanowires radially arrayed on cubic zinc-blende ZnS hollow spheres have been successfully achieved for the first time, and such novel heterogeneous ZnS hollow urchin-like hierarchical nanostructures show greatly enhanced photocatalytic properties due to their two-phase enhanced light-harvesting and high surface-to-volume ratio.

متن کامل

Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process.

Manganese-incorporated ZnS (MnxZn1-xS) nanorods were synthesized by a simple solvothermal process. Synthesized nanorods were single crystalline. Manganese incorporation in the ZnS lattice induces a phase transformation from hexagonal wurtzite to cubic zinc blende structure. The diameter of the nanorods increased with the increase of Mn concentration. Intense orange luminescence at approximately...

متن کامل

Size- and shape-dependent phase transformations in wurtzite ZnS nanostructures.

This paper describes the equilibrium morphologies of zinc sulfide nanoparticles in the wurtzite phase as a function of size, determined using ab initio Density Functional Theory (DFT) simulations and a shape-dependent thermodynamic model predicting the Gibbs free energy of a nanoparticle. We investigate the relative stabilities of a variety of nanoparticle shapes based on the wurtzite structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 15  شماره 

صفحات  -

تاریخ انتشار 2014